A Computational Model of How Cholinergic Interneurons Protect Striatal-dependent Learning
نویسندگان
چکیده
An essential component of skill acquisition is learning the environmental conditions in which that skill is relevant. This article proposes and tests a neurobiologically detailed theory of how such learning is mediated. The theory assumes that a key component of this learning is provided by the cholinergic interneurons in the striatum known as tonically active neurons (TANs). The TANs are assumed to exert a tonic inhibitory influence over cortical inputs to the striatum that prevents the execution of any striatal-dependent actions. The TANs learn to pause in rewarding environments, and this pause releases the striatal output neurons from this inhibitory effect, thereby facilitating the learning and expression of striatal-dependent behaviors. When rewards are no longer available, the TANs cease to pause, which protects striatal learning from decay. A computational version of this theory accounts for a variety of single-cell recording data and some classic behavioral phenomena, including fast reacquisition after extinction.
منابع مشابه
D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons.
Striatal cholinergic interneurons are critical elements of the striatal circuitry controlling motor planning, movement, and associative learning. Intrastriatal release of dopamine and inhibition of interneuron activity is thought to be a critical link between behaviorally relevant events, such as reward, and alterations in striatal function. However, the mechanisms mediating this modulation are...
متن کاملStriatal cholinergic interneurons and cortico-striatal synaptic plasticity in health and disease.
Basal ganglia disorders such as Parkinson's disease, dystonia, and Huntington's disease are characterized by a dysregulation of the basal ganglia neuromodulators (dopamine, acetylcholine, and others), which impacts cortico-striatal transmission. Basal ganglia disorders are often associated with an imbalance between the midbrain dopaminergic and striatal cholinergic systems. In contrast to the e...
متن کاملStriatal Cholinergic Interneurons Drive GABA Release from Dopamine Terminals
Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Usi...
متن کاملRecurrent inhibitory network among striatal cholinergic interneurons.
The striatum plays a central role in sensorimotor learning and action selection. Tonically active cholinergic interneurons in the striatum give rise to dense axonal arborizations and significantly shape striatal output. However, it is not clear how the activity of these neurons is regulated within the striatal microcircuitry. In this study, using rat brain slices, we find that stimulation of in...
متن کاملA dopamine-acetylcholine cascade: simulating learned and lesion-induced behavior of striatal cholinergic interneurons.
The giant cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with pauses to appetitive and aversive cues and to novel events. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from intralaminar thalamic nuclei and dopaminergic inputs from midbrain are required for genesis of pause responses. No prior computatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cognitive neuroscience
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2011